5- Numerical Differentiation (Finite Difference Calculus)

Introduction

Numerical differentiation is the process of finding the numerical value of a derivative of a given function at a given point. In numerical analysis, numerical differentiation describes algorithms for estimating the derivative of a mathematical function using values of the function and perhaps other knowledge about the function.

Forward and backward differences

Consider a function f(x) which is analytical (can be expanded by Taylor series) in the neighborhood of a point x as shown in the figure. We can find f(x+h)by expanding f(x) in a Taylor series about x:

or

This equation represents the first derivative of f(x) with respect to x which is accurate to within an error of order h. employing the subscript notation:

$$f(x) = f_{j}$$
 and $f(x+h) = f_{j+1}$, then
 $f'_{j} = \frac{f_{j+1} - f_{j}}{h} + O(h)$ or $f'_{j} = \frac{\Delta f_{j}}{h} + O(h)$,

where Δf_j is the first forward difference of f at j, and $\frac{\Delta f_j}{h}$ is the first forward difference approximation to f' at j with an error order of h.

Similarly, we can find f(x-h) by expanding f(x) in a Taylor series about x:

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \dots,$$

solving for f'(x) yields:

$$f'(x) = \frac{f(x) - f(x - h)}{h} + \frac{h}{2!}f''(x) - \frac{h^2}{3!}f'''(x) - \dots,$$

or simply $f'_{j} = \frac{f_{j} - f_{j-1}}{h} + O(h)$ or $f'_{j} = \frac{\nabla f_{j}}{h} + O(h)$,

where ∇f_j is the first backward difference of *f* at *j*, and $\frac{\nabla f_j}{h}$ is the first backward difference approximation to *f'* at *j* with an error order of *h*.

How to find higher order derivatives

To find f''(x), using Taylor series expansion of f(x+h) and f(x+2h) about x gives:

$$f(x+2h) = f(x) + 2hf'(x) + \frac{4h^2}{2!}f''(x) + \frac{8h^3}{3!}f'''(x) + \dots$$
(2)

Multiplying Eq.1 by 2 and subtracting Eq.1 from Eq.2, then solving for f''(x) yields:

$$f''(x) = \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2} - hf'''(x) - \dots,$$

or simply, $f''_{j} = \frac{f_{j+2} - 2f_{j+1} + f_{j}}{h^{2}} + O(h)$ or $f''_{j} = \frac{\Delta^{2}f_{j}}{h^{2}} + O(h)$,

where $\Delta^2 f_{j}$ is the second forward difference of *f* at *j*.

Similarly, by using the Taylor series expansion of f(x-h) and f(x-2h) about *x*, we can get:

$$f''_{j} = \frac{f_{j} - 2f_{j-1} + f_{j-2}}{h^{2}} + O(h) \quad \text{or} \quad f''_{j} = \frac{\nabla^{2} f_{j}}{h^{2}} + O(h),$$

where $\nabla^2 f_{i}$ is the second backward difference of *f* at *j*.

Generally, any forward or backward difference may be obtained starting from the first forward or backward difference by using the following recurrence formulae:

$$\Delta^n f_j = \Delta(\Delta^{n-1} f_j)$$
 and $\nabla^n f_j = \nabla(\nabla^{n-1} f_j)$.

For example,

$$\begin{split} \Delta^2 f_j &= \Delta (\Delta f_j) = \Delta (f_{j+1} - f_j) = \Delta f_{j+1} - \Delta f_j = (f_{j+2} - f_{j+1}) - (f_{j+1} - f_j) \\ &= f_{j+2} - 2f_{j+1} + f_j. \end{split}$$

Thus, the derivatives of any order, with an error of order *h*, are given by:

$$\frac{d^n f_j}{dx^n} = \frac{\Delta^n f_j}{h^n} + O(h), \quad \text{or} \quad \frac{d^n f_j}{dx^n} = \frac{\nabla^n f_j}{h^n} + O(h).$$

<u>Note</u>: The 1st forward and backward difference approximations of O(h) are exact for 1st polynomials (straight lines), and the 2nd forward and backward difference approximations of O(h) are exact for 2nd degree polynomials. Generally, the nth difference approximations of O(h) for $f^n(x)$ are exact for polynomials of *n*-degree.

How to find more accurate approximations

More accurate expressions for derivatives may be found by taking more terms in the Taylor series expansion. For example, to find f'(x) with $O(h)^2$:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \dots,$$

but $f''(x) = \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2} + O(h)$, substituting above:

Numerical Analysis / Civil Eng. / 3rd Class

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!} \left[\frac{f(x+2h) - 2f(x+h) + f(x)}{h^2} + O(h) \right] + \frac{h^3}{3!} f'''(x) + \dots$$

solving for f'(x) yields:

$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} + O(h)^2 ,$$

 $f'_{j} = \frac{-f_{j+2} + 4f_{j+1} - 3f_{j}}{2h} + O(h)^{2}.$

or simply,

<u>*Note*</u>: This expression is exact for polynomials of degree 2 and lower (since the error involves only third and higher derivatives).

Central differences

Using Taylor series expansion of f(x+h) and f(x-h) about x gives:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \dots, \qquad (3)$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!} f''(x) - \frac{h^3}{3!} f'''(x) + \dots$$
(4)

Subtracting Eq.4 from Eq.3 and solving for f'(x) yields:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{3!} f'''(x) - \dots,$$

ply,
$$f'_j = \frac{f_{j+1} - f_{j-1}}{2h} + O(h)^2.$$

or simply,

Note: This expression is exact for polynomials of degree 2 and lower.

To obtain f''(x), one additional Taylor series expansion in each direction is required. In general:

$$\frac{d^{n}f_{j}}{dx^{n}} = \frac{\nabla^{n}f_{j+n/2} + \Delta^{n}f_{j-n/2}}{2h^{n}} + O(h)^{2} \qquad n \text{ is even,}$$

$$\frac{d^{n}f_{j}}{dx^{n}} = \frac{\nabla^{n}f_{j+(n-1)/2} + \Delta^{n}f_{j-(n-1)/2}}{2h^{n}} + O(h)^{2} \qquad n \text{ is odd.}$$

- 34 -

<u>Note</u>: The following table gives the most used finite difference approximations:

FORWARD DIFFERENCES	BACKWARD DIFFERENCES	Error
First Derivative	First Derivative	
$f_j' = \frac{-f_j + f_{j+1}}{h}$	$f_j' = \frac{f_j - f_{j-1}}{h}$	O(h)
$f_j' = \frac{-3f_j + 4f_{j+1} - f_{j+2}}{2h}$	$f'_{j} = \frac{3f_{j} - 4f_{j-1} + f_{j-2}}{2h}$	$O(h)^2$
Second Derivative	Second Derivative	
$f''_{j} = \frac{f_{j} - 2f_{j+1} + f_{j+2}}{h^2}$	$f_{j}'' = \frac{f_{j} - 2f_{j-1} + f_{j-2}}{h^{2}}$	O(h)
$f''_{j} = \frac{2f_{j} - 5f_{j+1} + 4f_{j+2} - f_{j+3}}{h^{2}}$	$f_{j}'' = \frac{2f_{j} - 5f_{j-1} + 4f_{j-2} - f_{j-3}}{h^{2}}$	$O(h)^2$
Third Derivative	Third Derivative	
$f_{j}''' = \frac{-f_{j} + 3f_{j+1} - 3f_{j+2} + f_{j+3}}{h^{3}}$	$f_{j}''' = \frac{f_{j} - 3f_{j-1} + 3f_{j-2} - f_{j-3}}{h^{3}}$	O(h)
$f_{j}'''=\frac{-5f_{j}+18f_{j+1}-24f_{j+2}+14f_{j+3}-3f_{j+4}}{2h^{3}}$	$f_{j}''' = \frac{5f_{j} - 18f_{j-1} + 24f_{j-2} - 14f_{j-3} + 3f_{j-4}}{2h^{3}}$	$O(h)^2$
Fourth Derivative	Fourth Derivative	
$f_{j}^{iv} = \frac{f_{j} - 4f_{j+1} + 6f_{j+2} - 4f_{j+3} + f_{j+4}}{h^{4}}$	$f_{j}^{iv} = \frac{f_{j} - 4f_{j-1} + 6f_{j-2} - 4f_{j-3} + f_{j-4}}{h^{4}}$	O(h)
$f_{j}^{iv} = \frac{3f_{j} - 14f_{j+1} + 26f_{j+2} - 24f_{j+3} + 11f_{j+4} - 2f_{j+5}}{h^{4}}$	$f_{j}^{iv} = \frac{3f_{j} - 14f_{j-1} + 26f_{j-2} - 24f_{j-3} + 11f_{j-4} - 2f_{j-5}}{h^{4}}$	$O(h)^2$

CENTRAL DIFFERENCES	
First Derivative	
$f'_{j} = \frac{-f_{j-1} + f_{j+1}}{2h}$	$O(h)^2$
$f'_{j} = \frac{f_{j-2} - 8f_{j-1} + 8f_{j+1} - f_{j+2}}{12h}$	$O(h)^4$
Second Derivative	
$f_{j}'' = \frac{f_{j-1} - 2f_{j} + f_{j+1}}{h^2}$	$O(h)^2$
$f_{j}'' = \frac{-f_{j-2} + 16f_{j-1} - 30f_{j} + 16f_{j+1} - f_{j+2}}{12h^2}$	$O(h)^4$
Third Derivative	
$f_{j}''' = \frac{-f_{j-2} + 2f_{j-1} - 2f_{j+1} + f_{j+2}}{2h^3}$	$O(h)^2$
$f_{j}''' = \frac{f_{j-3} - 8f_{j-2} + 13f_{j-1} - 13f_{j+1} + 8f_{j+2} - f_{j+3}}{8h^3}$	$O(h)^4$
Fourth Derivative	
$f_{j}^{iv} = \frac{f_{j-2} - 4f_{j-1} + 6f_{j} - 4f_{j+1} + f_{j+2}}{h^4}$	$O(h)^2$
$f_{j}^{iv} = \frac{-f_{j-3} + 12f_{j-2} - 39f_{j-1} + 56f_{j} - 39f_{j+1} + 12f_{j+2} - f_{j+3}}{6h^4}$	$O(h)^4$

Example 1: Find f'(x) at x=1 for the function $f(x) = e^x$. Compare with the exact

answer. (Use h = 0.1)

Solution:

By central difference approximations with $O(h)^2$,

$$f'_{j} = \frac{-f_{j-1} + f_{j+1}}{2h} + O(h)^{2}, \qquad \qquad \underbrace{\begin{array}{c} \bullet & \bullet \\ 0.9 & 1 & 1.1 \\ j-1 & j & j+h \end{array}}_{j-1} \bullet$$

At $x=1 \implies j=1$, j+1=x+h=1+0.1=1.1, and j-1=x-h=1-0.1=0.9.

$$f'(1) \approx \frac{-f(0.9) + f(1.1)}{2(0.1)} \implies f'(1) \approx \frac{-e^{0.9} + e^{1.1}}{0.2} \approx 2.722815.$$

The (exact) value is $e^1 = 2.718282$ (from the scientific calculator).

Percent relative error $P = \left| \frac{exact - approx}{exact} \right| \times 100 = \left| \frac{2.718282 - 2.722815}{2.718282} \right| \times 100 = 0.17\%$

Notes:

* If we use forward difference approximations with O(h),

$$f'_{j} = \frac{-f_{j} + f_{j+1}}{h} + O(h),$$

$$f'(1) \approx \frac{-f(1) + f(1.1)}{0.1} \quad \Rightarrow \quad f'(1) \approx \frac{-e^{1} + e^{1.1}}{0.1} \approx 2.858842.$$

The (exact) value is $e^1 = 2.718282$ (from the scientific calculator).

Percent relative error
$$P = \left| \frac{2.718282 - 2.858842}{2.718282} \right| \times 100 = 5.17\%$$
.

* If we use backward difference approximations with O(h),

$$f'_{j} = \frac{f_{j} - f_{j-1}}{h} + O(h),$$

$$f'(1) \approx \frac{f(1) - f(0.9)}{0.1} \implies f'(1) \approx \frac{e^{1} - e^{0.9}}{0.1} \approx 2.586787.$$

Percent relative error $P = \left| \frac{2.718282 - 2.586787}{2.718282} \right| \times 100 = 4.8\%.$

Example 2: Given the function $f(x) = (x+1)^x$, find f'(2) correct to three decimals. **Solution:**

Use central difference approximations with $O(h)^2$,

$$f'_{j} = \frac{-f_{j-1} + f_{j+1}}{2h} + O(h)^{2}.$$

<u>1st iteration</u>: Take $h_1 = 0.2$, At $x=2 \implies j=2$, $j+1=x+h_1=2+0.2=2.2$, and $j-1=x-h_1=2-0.2=1.8$. $f'(2) \approx \frac{-f(1.8) + f(2.2)}{2(0.2)} \approx \frac{-(1.8+1)^{1.8} + (2.2+1)^{2.2}}{0.4} \approx 16.352674.$

2nd iteration: Take
$$h_2 = \frac{h_1}{2} = \frac{0.2}{2} = 0.1$$
,
 $j+1 = x + h_2 = 2 + 0.1 = 2.1$, and $j-1 = x - h_2 = 2 - 0.1 = 1.9$.
 $f'(2) \approx \frac{-f(1.9) + f(2.1)}{2(0.1)} \approx \frac{-(1.9 + 1)^{1.9} + (2.1 + 1)^{2.1}}{0.2} \approx 16.002864$.

The calculations must be continued until $\Delta \leq \varepsilon$.

No. of Iteration (<i>i</i>)	h_i	f_i'	$\Delta_i = \left f_i' - f_{i-1}' \right $
1	0.2	16.352674	
2	0.1	16.002864	0.34
3	0.05	15.916291	0.08
4	0.025	15.894702	0.02
5	0.0125	15.889308	5.3×10^{-3}
6	0.00625	15.887960	1.3×10^{-3}
7	0.003125	15.887623	$3.3 \times 10^{-4} < \varepsilon$

 $\therefore f'(2) \approx 15.887623.$