5- Numerical Differentiation
 (Finite Difference Calculus)

Introduction

Numerical differentiation is the process of finding the numerical value of a derivative of a given function at a given point. In numerical analysis, numerical differentiation describes algorithms for estimating the derivative of a mathematical function using values of the function and perhaps other knowledge about the function.

Forward and backward differences

Consider a function $f(x)$ which is analytical (can be expanded by Taylor series) in the neighborhood of a point x as shown in the figure. We can find $f(x+h)$ by expanding $f(x)$ in a Taylor series about x :

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\ldots .
$$

solving for $f^{\prime}(x)$ yields:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\frac{h}{2!} f^{\prime \prime}(x)-\frac{h^{2}}{3!} f^{\prime \prime \prime}(x)-\ldots .
$$

or $\quad f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+O(h)$.
This equation represents the first derivative of $f(x)$ with respect to x which is accurate to within an error of order h. employing the subscript notation:

$$
\begin{aligned}
& f(x)=f_{j} \quad \text { and } \quad f(x+h)=f_{j+1} \text {, then } \\
& f_{j}^{\prime}=\frac{f_{j+1}-f_{j}}{h}+O(h) \quad \text { or } \quad f_{j}^{\prime}=\frac{\Delta f_{j}}{h}+O(h),
\end{aligned}
$$

where Δf_{j} is the first forward difference of f at j, and $\frac{\Delta f_{j}}{h}$ is the first forward difference approximation to f^{\prime} at j with an error order of h.

Similarly, we can find $f(x-h)$ by expanding $f(x)$ in a Taylor series about x :

$$
f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)-\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\ldots \ldots
$$

solving for $f^{\prime}(x)$ yields:

$$
f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+\frac{h}{2!} f^{\prime \prime}(x)-\frac{h^{2}}{3!} f^{\prime \prime \prime}(x)-\ldots . .
$$

or simply $f_{j}^{\prime}=\frac{f_{j}-f_{j-1}}{h}+O(h) \quad$ or $\quad f_{j}^{\prime}=\frac{\nabla f_{j}}{h}+O(h)$,
where ∇f_{j} is the first backward difference of f at j, and $\frac{\nabla f_{j}}{h}$ is the first backward difference approximation to f^{\prime} at j with an error order of h.

How to find higher order derivatives

To find $f^{\prime \prime}(x)$, using Taylor series expansion of $f(x+h)$ and $f(x+2 h)$ about x gives:

$$
\begin{align*}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\ldots . \tag{1}\\
& f(x+2 h)=f(x)+2 h f^{\prime}(x)+\frac{4 h^{2}}{2!} f^{\prime \prime}(x)+\frac{8 h^{3}}{3!} f^{\prime \prime \prime}(x)+\ldots . \tag{2}
\end{align*}
$$

Multiplying Eq. 1 by 2 and subtracting Eq. 1 from Eq. 2 , then solving for $f^{\prime \prime}(x)$ yields:

$$
f^{\prime \prime}(x)=\frac{f(x+2 h)-2 f(x+h)+f(x)}{h^{2}}-h f^{\prime \prime \prime}(x)-\ldots \ldots
$$

or simply, $f_{j}^{\prime \prime}=\frac{f_{j+2}-2 f_{j+1}+f_{j}}{h^{2}}+O(h) \quad$ or $\quad f_{j}^{\prime \prime}=\frac{\Delta^{2} f_{j}}{h^{2}}+O(h)$,
where $\Delta^{2} f$ is the second forward difference of f at j.
Similarly, by using the Taylor series expansion of $f(x-h)$ and $f(x-2 h)$ about x, we can get:

$$
f_{j}^{\prime \prime}=\frac{f_{j}-2 f_{j-1}+f_{j-2}}{h^{2}}+O(h) \quad \text { or } \quad f_{j}^{\prime \prime}=\frac{\nabla^{2} f_{j}}{h^{2}}+O(h)
$$

where $\nabla^{2} f_{j}$ is the second backward difference of f at j.
Generally, any forward or backward difference may be obtained starting from the first forward or backward difference by using the following recurrence formulae:

$$
\Delta^{n} f_{j}=\Delta\left(\Delta^{n-1} f_{j}\right) \quad \text { and } \quad \nabla^{n} f_{j}=\nabla\left(\nabla^{n-1} f_{j}\right)
$$

For example,

$$
\begin{aligned}
\Delta^{2} f_{j}=\Delta\left(\Delta f_{j}\right)=\Delta\left(f_{j+1}-f_{j}\right)=\Delta f_{j+1}-\Delta f_{j} & =\left(f_{j+2}-f_{j+1}\right)-\left(f_{j+1}-f_{j}\right) \\
& =f_{j+2}-2 f_{j+1}+f_{j} .
\end{aligned}
$$

Thus, the derivatives of any order, with an error of order h, are given by:

$$
\frac{d^{n} f_{j}}{d x^{n}}=\frac{\Delta^{n} f_{j}}{h^{n}}+O(h), \quad \text { or } \quad \frac{d^{n} f_{j}}{d x^{n}}=\frac{\nabla^{n} f_{j}}{h^{n}}+O(h)
$$

Note: The $1^{\text {st }}$ forward and backward difference approximations of $O(h)$ are exact for $1^{\text {st }}$ polynomials (straight lines), and the $2^{\text {nd }}$ forward and backward difference approximations of $O(h)$ are exact for $2^{\text {nd }}$ degree polynomials. Generally, the $\mathrm{n}^{\text {th }}$ difference approximations of $O(h)$ for $f^{n}(x)$ are exact for polynomials of n-degree.

How to find more accurate approximations

More accurate expressions for derivatives may be found by taking more terms in the Taylor series expansion. For example, to find $f^{\prime}(x)$ with $O(h)^{2}$:

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\ldots \ldots,
$$

but $f^{\prime \prime}(x)=\frac{f(x+2 h)-2 f(x+h)+f(x)}{h^{2}}+O(h)$, substituting above:

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!}\left[\frac{f(x+2 h)-2 f(x+h)+f(x)}{h^{2}}+O(h)\right]+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+. .
$$

solving for $f^{\prime}(x)$ yields:

$$
f^{\prime}(x)=\frac{-f(x+2 h)+4 f(x+h)-3 f(x)}{2 h}+O(h)^{2},
$$

or simply, $\quad f_{j}^{\prime}=\frac{-f_{j+2}+4 f_{j+1}-3 f_{j}}{2 h}+O(h)^{2}$.
Note: This expression is exact for polynomials of degree 2 and lower (since the error involves only third and higher derivatives).

Central differences

Using Taylor series expansion of $f(x+h)$ and $f(x-h)$ about x gives:

$$
\begin{align*}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\ldots . ., \tag{3}\\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)-\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\ldots . . \tag{4}
\end{align*}
$$

Subtracting Eq. 4 from Eq. 3 and solving for $f^{\prime}(x)$ yields:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}-\frac{h^{2}}{3!} f^{\prime \prime \prime}(x)-\ldots \ldots .,
$$

or simply, $\quad f_{j}^{\prime}=\frac{f_{j+1}-f_{j-1}}{2 h}+O(h)^{2}$.

Note: This expression is exact for polynomials of degree 2 and lower.
To obtain $f^{\prime \prime}(x)$, one additional Taylor series expansion in each direction is required. In general:

$$
\begin{array}{ll}
\frac{d^{n} f_{j}}{d x^{n}}=\frac{\nabla^{n} f_{j+n / 2}+\Delta^{n} f_{j-n / 2}}{2 h^{n}}+O(h)^{2} & n \text { is even, } \\
\frac{d^{n} f_{j}}{d x^{n}}=\frac{\nabla^{n} f_{j+(n-1) / 2}+\Delta^{n} f_{j-(n-1) / 2}}{2 h^{n}}+O(h)^{2} & n \text { is odd. }
\end{array}
$$

Note: The following table gives the most used finite difference approximations:

FORWARD DIFFERENCES	BACKWARD DIFFERENCES	Error
First Derivative $\begin{aligned} & f_{j}^{\prime}=\frac{-f_{j}+f_{j+1}}{h} \\ & f_{j}^{\prime}=\frac{-3 f_{j}+4 f_{j+1}-f_{j+2}}{2 h} \end{aligned}$	First Derivative $\begin{aligned} & f_{j}^{\prime}=\frac{f_{j}-f_{j-1}}{h} \\ & f_{j}^{\prime}=\frac{3 f_{j}-4 f_{j-1}+f_{j-2}}{2 h} \end{aligned}$	$\begin{aligned} & O(h) \\ & O(h)^{2} \end{aligned}$
Second Derivative $\begin{aligned} & f_{j}^{\prime \prime}=\frac{f_{j}-2 f_{j+1}+f_{j+2}}{h^{2}} \\ & f_{j}^{\prime \prime}=\frac{2 f_{j}-5 f_{j+1}+4 f_{j+2}-f_{j+3}}{h^{2}} \end{aligned}$	Second Derivative $\begin{aligned} & f_{j}^{\prime \prime}=\frac{f_{j}-2 f_{j-1}+f_{j-2}}{h^{2}} \\ & f_{j}^{\prime \prime}=\frac{2 f_{j}-5 f_{j-1}+4 f_{j-2}-f_{j-3}}{h^{2}} \end{aligned}$	$\begin{aligned} & O(h) \\ & O(h)^{2} \end{aligned}$
Third Derivative $\left\{\begin{array}{l} f_{j}^{\prime \prime \prime}=\frac{-f_{j}+3 f_{j+1}-3 f_{j+2}+f_{j+3}}{h^{3}} \\ f_{j}^{\prime \prime \prime}=\frac{-5 f_{j}+18 f_{j+1}-24 f_{j+2}+14 f_{j+3}-3 f_{j+4}}{2 h^{3}} \end{array}\right.$	Third Derivative $\begin{aligned} & f_{j}^{\prime \prime \prime}=\frac{f_{j}-3 f_{j-1}+3 f_{j-2}-f_{j-3}}{h^{3}} \\ & f_{j}^{\prime \prime \prime}=\frac{5 f_{j}-18 f_{j-1}+24 f_{j-2}-14 f_{j-3}+3 f_{j-4}}{2 h^{3}} \end{aligned}$	$\begin{aligned} & O(h) \\ & O(h)^{2} \end{aligned}$
Fourth Derivative $\begin{aligned} & f_{j}^{i v}=\frac{f_{j}-4 f_{j+1}+6 f_{j+2}-4 f_{j+3}+f_{j+4}}{h^{4}} \\ & f_{j}^{i v}=\frac{3 f_{j}-14 f_{j+1}+26 f_{j+2}-24 f_{j+3}+11 f_{j+4}-2 f_{j+5}}{h^{4}} \end{aligned}$	Fourth Derivative $\begin{aligned} & f_{j}^{i v}=\frac{f_{j}-4 f_{j-1}+6 f_{j-2}-4 f_{j-3}+f_{j-4}}{h^{4}} \\ & f_{j}^{i v}=\frac{3 f_{j}-14 f_{j-1}+26 f_{j-2}-24 f_{j-3}+11 f_{j-4}-2 f_{j-5}}{h^{4}} \end{aligned}$	$O(h)$ $O(h)^{2}$

CENTRAL DIFFERENCES	Error
First Derivative	$O(h)^{2}$
$f_{j}^{\prime}=\frac{-f_{j-1}+f_{j+1}}{2 h}$	$O(h)^{4}$
$f_{j}^{\prime}=\frac{f_{j-2}-8 f_{j-1}+8 f_{j+1}-f_{j+2}}{12 h}$	$O(h)^{2}$
Second Derivative	
$f_{j}^{\prime \prime}=\frac{f_{j-1}-2 f_{j}+f_{j+1}}{h^{2}}$	$O(h)^{4}$
$f_{j}^{\prime \prime}=\frac{-f_{j-2}+16 f_{j-1}-30 f_{j}+16 f_{j+1}-f_{j+2}}{12 h^{2}}$	$O(h)^{2}$
Third Derivative $-2 f_{j+1}+f_{j+2}$	
$f_{j}^{\prime \prime \prime}=\frac{-f_{j-2}+2 f_{j-1}-2 h^{3}}{h^{4}}$	$O(h)^{4}$
$f_{j}^{\prime \prime \prime}=\frac{f_{j-3}-8 f_{j-2}+13 f_{j-1}-13 f_{j+1}+8 f_{j+2}-f_{j+3}}{8 h^{3}}$	$O(h)^{2}$
Fourth Derivative	$O(h)^{4}$
$f_{j}^{i v}=\frac{f_{j-2}-4 f_{j-1}+6 f_{j}-4 f_{j+1}+f_{j+2}}{h^{4}}$	
$f_{j}^{i v}=\frac{-f_{j-3}+12 f_{j-2}-39 f_{j-1}+56 f_{j}-39 f_{j+1}+12 f_{j+2}-f_{j+3}}{6 h^{4}}$	

Example 1: Find $f^{\prime}(x)$ at $x=1$ for the function $f(x)=e^{x}$. Compare with the exact answer. (Use $h=0.1$)

Solution:

By central difference approximations with $O(h)^{2}$,

$$
f_{j}^{\prime}=\frac{-f_{j-1}+f_{j+1}}{2 h}+O(h)^{2},
$$

At $x=1 \Rightarrow j=1, \quad j+1=x+h=1+0.1=1.1$, and $j-1=x-h=1-0.1=0.9$.

$$
f^{\prime}(1) \approx \frac{-f(0.9)+f(1.1)}{2(0.1)} \Rightarrow f^{\prime}(1) \approx \frac{-e^{0.9}+e^{1.1}}{0.2} \approx 2.722815 .
$$

The (exact) value is $e^{1}=2.718282$ (from the scientific calculator).
Percent relative error $P=\left|\frac{\text { exact }- \text { approx. }}{\text { exact }}\right| \times 100=\left|\frac{2.718282-2.722815}{2.718282}\right| \times 100=0.17 \%$

Notes:

* If we use forward difference approximations with $O(h)$,

$$
\begin{aligned}
& f_{j}^{\prime}=\frac{-f_{j}+f_{j+1}}{h}+O(h), \\
& f^{\prime}(1) \approx \frac{-f(1)+f(1.1)}{0.1} \Rightarrow f^{\prime}(1) \approx \frac{-e^{1}+e^{1.1}}{0.1} \approx 2.858842 .
\end{aligned}
$$

The (exact) value is $e^{1}=2.718282$ (from the scientific calculator).
Percent relative error $P=\left|\frac{2.718282-2.858842}{2.718282}\right| \times 100=5.17 \%$.

* If we use backward difference approximations with $O(h)$,

$$
\begin{aligned}
& f_{j}^{\prime}=\frac{f_{j}-f_{j-1}}{h}+O(h), \\
& f^{\prime}(1) \approx \frac{f(1)-f(0.9)}{0.1} \Rightarrow f^{\prime}(1) \approx \frac{e^{1}-e^{0.9}}{0.1} \approx 2.586787
\end{aligned}
$$

Percent relative error $P=\left|\frac{2.718282-2.586787}{2.718282}\right| \times 100=4.8 \%$.

Example 2: Given the function $f(x)=(x+1)^{x}$, find $f^{\prime}(2)$ correct to three decimals.

Solution:

Use central difference approximations with $O(h)^{2}$,

$$
f_{j}^{\prime}=\frac{-f_{j-1}+f_{j+1}}{2 h}+O(h)^{2}
$$

1 ${ }^{\text {st }}$ iteration: Take $h_{1}=0.2$,

At $x=2 \Rightarrow j=2, \quad j+1=x+h_{1}=2+0.2=2.2, \quad$ and $j-1=x-h_{1}=2-0.2=1.8$.

$$
f^{\prime}(2) \approx \frac{-f(1.8)+f(2.2)}{2(0.2)} \approx \frac{-(1.8+1)^{1.8}+(2.2+1)^{2.2}}{0.4} \approx 16.352674
$$

$\underline{2^{\text {nd }} \text { iteration: }}$ Take $h_{2}=\frac{h}{2}=\frac{0.2}{2}=0.1$,

$$
\begin{aligned}
& j+1=x+h_{2}=2+0.1=2.1, \text { and } j-1=x-h_{2}=2-0.1=1.9 \\
& f^{\prime}(2) \approx \frac{-f(1.9)+f(2.1)}{2(0.1)} \approx \frac{-(1.9+1)^{1.9}+(2.1+1)^{2.1}}{0.2} \approx 16.002864
\end{aligned}
$$

The calculations must be continued until $\Delta \leq \varepsilon$.

No. of Iteration (i)	h_{i}	f_{i}^{\prime}	$\Delta_{i}=\left\|f_{i}^{\prime}-f_{i-1}^{\prime}\right\|$
1	0.2	16.352674	---
2	0.1	16.002864	$0.34 \ldots$
3	0.05	15.916291	$0.08 \ldots$.
4	0.025	15.894702	$0.02 \ldots$
5	0.0125	15.889308	5.3×10^{-3}
6	0.00625	15.887960	1.3×10^{-3}
7	0.003125	15.887623	$3.3 \times 10^{-4}<\varepsilon$

$\therefore \quad f^{\prime}(2) \approx 15.887623$.

