
 Numerical Analysis / Civil Eng. / 3
rd

 Class                                                       Prepared by: Dr. Ahmed Sagban Saadoon               

- 13 - 

 

5- Numerical Differentiation 

(Finite Difference Calculus) 

 

Introduction 

Numerical differentiation is the process of finding the numerical value of 

a derivative of a given function at a given point. In numerical analysis, numerical 

differentiation describes algorithms for estimating the derivative of a mathematical 

function using values of the function and perhaps other knowledge about the 

function. 

 

Forward and backward differences 

Consider a function )(xf  which is analytical (can be expanded by Taylor 

series) in the neighborhood of a point x as shown in the figure. We can find )( hxf   

by expanding )(xf  in a Taylor series about x: 
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.....)(
!3

)(
!2

)()(
)(

2




 xf
h

xf
h

h

xfhxf
xf  , 

or     )(
)()(

)( hO
h

xfhxf
xf 


 . 

This equation represents the first derivative of )(xf  with respect to x which is 

accurate to within an error of order h. employing the subscript notation: 
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where jf  is the first forward difference of f at j, and 
h

f
j


 is the first forward 

difference approximation to f   at j with an error order of h. 
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http://mathworld.wolfram.com/Derivative.html
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Mathematical_function
https://en.wikipedia.org/wiki/Mathematical_function
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Similarly, we can find )( hxf   by expanding )(xf  in a Taylor series about x: 
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solving for )(xf   yields: 

.....)(
!3

)(
!2

)()(
)(

2




 xf
h

xf
h

h

hxfxf
xf  , 

or simply )(
1

hO
h

ff
f

jj

j 





    or    )(hO
h

f
f

j

j 


 , 

where jf  is the first backward difference of f at j, and 
h

f
j


 is the first backward 

difference approximation to f   at j with an error order of h. 

 

How to find higher order derivatives 

To find )(xf  , using Taylor series expansion of )( hxf   and )2( hxf   

about x gives: 
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Multiplying Eq.1 by 2 and subtracting Eq.1 from Eq.2, then solving for )(xf   yields: 
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where 
j

f2  is the second forward difference of f at j. 

Similarly, by using the Taylor series expansion of )( hxf   and )2( hxf   

about x, we can get: 
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where 
j

f2  is the second backward difference of f at j. 

Generally, any forward or backward difference may be obtained starting from 

the first forward or backward difference by using the following recurrence formulae: 
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Thus, the derivatives of any order, with an error of order h, are given by: 
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Note: The 1
st
 forward and backward difference approximations of )(hO  are exact for 

          1
st
 polynomials (straight lines), and the 2

nd
 forward and backward difference 

          approximations of )(hO  are exact for 2
nd

 degree polynomials. Generally, the 

          n
th

 difference approximations of )(hO  for )(xf n  are exact for polynomials of 

          n-degree.  

 

How to find more accurate approximations 

More accurate expressions for derivatives may be found by taking more terms 

in the Taylor series expansion. For example, to find )(xf   with 2)(hO : 
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solving for )(xf   yields: 
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Note: This expression is exact for polynomials of degree 2 and lower (since the error 

involves only third and higher derivatives).  

 

Central differences 

Using Taylor series expansion of )( hxf   and )( hxf   about x gives: 
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Subtracting Eq.4 from Eq.3 and solving for )(xf   yields: 
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Note: This expression is exact for polynomials of degree 2 and lower.  

To obtain )(xf  , one additional Taylor series expansion in each direction is 

required. In general: 
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Note: The following table gives the most used finite difference approximations: 

FORWARD DIFFERENCES BACKWARD DIFFERENCES Error 
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Example 1: Find )(xf   at 1x   for the function xexf )( . Compare with the exact 

                   answer. (Use 1.0h ) 

Solution: 

By central difference approximations with 2)(hO , 
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The (exact) value is 718282.21 e  (from the scientific calculator). 

Percent relative error P= %17.0100
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722815.2718282.2
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Notes: 

* If we use forward difference approximations with )(hO , 
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     The (exact) value is 718282.21 e  (from the scientific calculator). 

     Percent relative error P= %17.5100
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* If we use backward difference approximations with )(hO , 
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Example 2: Given the function xxxf )1()(  , find )2(f   correct to three decimals. 

Solution: 

Use central difference approximations with 2)(hO , 
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The calculations must be continued until  . 

 

No. of 

Iteration (i) 
ih  

i
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ii
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1 0.2 16.352674 ---- 

2 0.1 16.002864 0.34…. 

3 0.05 15.916291 0.08…. 

4 0.025 15.894702 0.02…. 

5 0.0125 15.889308 5.3 310  

6 0.00625 15.887960 1.3 310  

7 0.003125 15.887623 3.3 410   
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